Restoration actions and pre-restoration baseline for microbial activity from two forestry drained fens in Northern Finland

Jenni Hultman

16.4.2025

LIFE PeatCarbon sites at Pallas

Välisuo Mire

Catchment area 156 ha

Effective area ca. 24 ha

Restoration

- 1. Tree harvest
- 2. Ditch filling and dams

Aims:

- Pre drainage tree density
- Fill the ditches and build dams to allow water table to rise and original anoxic conditions to return

O Luke

Examples of restoration plan for dams

- PP = wood and peat dam
- TP = peat dam
- OT = filled ditch

- 81 to Matorovansuo
- 15 to Välisuo
- Several visit to sites in summer 2025 to check the restoration process

Dams in July 2024

Ditches filled with harvest material

O Luke

Sari Juutinen/FMI

Methods used

'Multiomics'

Metagenomics All DNA

Species in a sample

Genes in a sample \rightarrow what the (microbial) community can do

Assembly \rightarrow longer fragments from short sequence reads

MAG Metagenome Assembled Genome

Metatranscriptomics

Which species are active

Which genes are being transcribed \rightarrow what the (microbial) community is doing

Monitoring sites in Pallas

Monitoring of:

 GHG twice a month during anout free period once a month i Microbes produce and

consume GHGs,

resposible for GHG

- Vegetation
- Nutrients
- Hydrology
- Microbial comr Cycling and activity

The sites have areas that well drained and close to pristine

Metagenomic DNA, community composition

0.1 -status 0.0 -[13.7%] drained undrained Axis.2 site matorova -0.2 valisuo -0.3 --0.2 0.0 0.2 0.4 [38.9%] Axis.1

Normalised counts

Two peatlands Matorovansuo mire and Välisuo mire

Both had drained and undrained areas

Sampling June July August September

Metatranscriptomic RNA, community composition

Normalised counts

Two peatlands

Matorovansuo mire and Välisuo mire

Both had drained and undrained areas

Sampling June July August September

Metatranscriptomic RNA, community functions

Two peatlands

Matorovansuo mire and Välisuo mire

Both had drained and undrained areas

Sampling June July August September

Active microbes on order level

Matorova drained sites order

Matorova undrained sites order

Order

(Actinobacteria) (Bacteria) Acetobacterales Acidobacteriales Bryobacterales Corynebacteriales Frankiales Gemmatales Isosphaerales Pedosphaerales Polyangiales Rhizobiales Solibacterales uncultured WD260

Genes involved in methane cycling

Methanogenesis

mcrA

Methane oxidation

pmoA

And nitrogen cycling and N2O production?

O Luke

time 🛱 6_June 🛱 7_July 🛱 8_August 🛱 9_September

Trace gases? H₂, CO, CH₄

time 🖨 6_June 🛱 7_July 🚔 8_August 🛱 9_September

time 🛱 6_June 🛱 7_July 🛱 8_August 🛱 9_September

C Luke

CH₄ CH₄

Methane oxidizing genes
< methane producing genes

Seasonal changes, linkage to GHG measurements

LIFE/Peacearbon

Models? FMI

Microbes (species, and functions)

Hydrology (Uoulu)

What happens after restoration?

Vegetation and traits

Remote sensing

