Hydrogeological studies and groundwater modelling in the project sites in Finland

EU LIFE Project Scientific Group Meeting Programme

26th September 024

Anna Autio, Omar Nimr, Khizer Jadoon, Hannu Marttila

Outline:

- Hydrological monitoring
- Hydrologeloical surveying
 with geophysical methods
- Other measurements
- Methods: numerical modelling
- Modelling: current progress and first results
 - Välisuo modelling
 - Matorovasuo modelling
- Future plans

- Monitoring network established in 2022-2024 (drained areas and pristine area)
- Objectives:
 - To monitor the impacts of restoration on GWT in the mires
 - Provide data for model calibration and/or validation
- Currenly 29 monitoring sensors installed in Pallaslompolo in and Matorovasuo catchments (5 in Välisuo, 12 in Matorovasuo, 12 Pallaslompolo)

Restoration

Ground penetrating radar:

የሃ

- April and June 2024
- In total ~25 km

Seismic refraction -2 lines -Total length ~220 m

Measurements done for Master's thesis of Khizer Jadoon (ready in November 2024)

Hydrologeloical surveying with geophysical methods

b

رمی Other measurmen

- Manual peat depth measurments
- Validation data for GPR

METHODS: numerical modeling

- Integrated physically based
 groundwater-surface water modeling
- SPATIALLY DISTRIBUTED model with internal processes for ET, surface flow, groundwater flow
- Each process is described by wellestablished physical law, based on the hydraulic gradient
- GW and SW solved simultaneously, → Allows autogenesis of surface domain futures (rivers, lakes etc.)
- Software: HydroGoepShere

Fig. 3. Schematic diagram of (a) Hydrologic basin and (b) Three dimensional nodal model of hydrologic basin.

Freeze and Harlan 1969

Välisuo modelling

- Objectives
 - Focasting hydrological observations -> validation of hydrological conditions for carbon balance simulation
- Integrated physically based groundwater-surface water (GW-SW) modelling with HydroGeoSpehere
- Modiefied model for whole Pallaslompol catchment
 - Hypothesis: In sucesfully restored fen/aapa mire system GW input to mire should significantly increase
 - Densified mesh to inclue implicitly various resotration structures
 Journal of Hydrology 626 (2023) 130342

Research papers

Groundwater exfiltration pattern determination in the sub-arctic catchment using thermal imaging, stable water isotopes and fully-integrated groundwater-surface water modelling

Anna Autio^{a,*}, Pertti Ala-Aho^a, Pekka M. Rossi^a, Anna-Kaisa Ronkanen^{a,b}, Mika Aurela^c, Annalea Lohila^{c,d}, Pasi Korpelainen^e, Timo Kumpula^e, Björn Klöve^a, Hannu Marttila^a

Glacial Gravel and Sandy Till
 Peat Deposites

undrained drained

University of Oulu

Matorova 1957

Matorova 2024

Intense Network of Artificial Drains, in both open peat and forestry landscapes

Straightening of the main-stream course

✓I ✓✓I ✓✓<

Pre-management model

Fine resolution of 1m only at a buffer of the stream, then gradual increase reaches maximum global edge length of the cell = 20m no. nodes = 31k, no. elements= 61K

Post-management Model

Fine resolution of 1m only at a buffer of the stream, then gradual increase reaches maximum global edge length of the cell = 50m no. nodes = 316k, no. elements= 632K

HydroGeoSphere (Surface + Subsurface Hydrology)

Main layer (1): 1.5m total, three sublayers, proportional thicknesses (1:1:2)

Main layer (2): 8.5m total, two sublayers, uniform thicknesses

Coning/ and Parameterization.

Overland flow domain: (2 zones) Peatlands (red color) Forests (light blue)

Porose medium domain : (4 zones)

Three zones for the peat soil (surface layers) A Zone for sandy glacial till deposits (deep layer)

Parameterization is based on soil data and stratigraphy obtained from a neighbouring catchment (Pallaslompolo).

What's Next?

-Measured time-series analysis (pre-restoration and postrestoration, October 2024)

- Calibration/ and validation on long-term transient conditions for both peatlands

- Adding restoration scenario for current and future climate scenarios

- Post-processing approach for instream water-origin partitioning (i.e., HMC)

- Assessment – Multivariate analysis on hydrological responses for the different management scenario

